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ABSTRACT
Tracking of left ventricles in 3D echocardiography is a chal-

lenging topic because of the poor quality of ultrasound im-

ages and the speed consideration. In this paper, a fast and ac-

curate learning based 3D tracking algorithm is presented. A

novel one-step forward prediction is proposed to generate the

motion prior using motion manifold learning. Collaborative

trackers are introduced to achieve both temporal consistence

and tracking robustness. The algorithm is completely auto-

matic and computationally efficient. The mean point-to-mesh

error of our algorithm is 1.28 mm. It requires less than 1.5

seconds to process a 3D volume (160 × 148 × 208 voxels).

Index Terms— Tracking, Ultrasound, Left Ventricles

1. INTRODUCTION

The 3D echocardiography (ultrasound of the heart) is one

of the most widely used diagnostic tools in modern imag-

ing modalities for visualizing cardiac structure and diagnos-

ing cardiovascular disease. There are several advantages of

using 3D ultrasound over other imaging modalities, like CT

and MRI: 1) Ultrasound is much cheaper than CT and MRI

and it is more convenient to use, e.g., hand-carried ultrasound

equipment is widely used for routine diagnosis; 2) Ultrasound

is noninvasive, which does not produce ionizing radiation or

require contrast agents. However, ultrasound imaging nor-

mally provides noisy images with poor object boundaries.

Recently, the automatic segmentation and tracking of

heart ventricles have received considerable attentions [1, 2, 3,

4]. Among these applications, the tracking of left ventricles

(LV) have attracted particular interests, because it provides

clinical significance for doctors to detect the coronary artery

disease and evaluate acute myocardial infractions. However,

tracking LV in 3D echocardiography is still a challenging

problem. Widely used 2D tracking algorithms may bring

computational problems for a 3D application. The ultrasound

image also has relatively low qualities than natural image

sequences, which may further bring more frequent tracking

failures.

Recently, the idea of utilizing detection for tracking to

achieve the robustness in noisy environment is proven to be

quite effective. Tracking by detection does not accumulate

errors from previous frames and can therefore avoid template

drifting. However, it still has two major problems in 3D

boundary tracking: 1) The boundary classifiers are sensitive

to initial positions [5]. In order to achieve accurate boundary

tracking results, good initializations have to be provided. 2)

Tracking by detection applies universal description of the

objects without considering the temporal relationships. This

leads to the temporal inconsistence between adjacent frames.

To address the limitations of the previous work, we pro-

pose a new method and make the following contributions:

• A novel one-step forward prediction using motion man-

ifold learning. The learned motion modes provide re-

quired good initialization for the boundary classifiers.

• A collaborative 3D template tracker is introduced to

erase the temporal inconsistence introduced by detec-

tion tracker.

• The algorithm we proposed is fast and accurate. It took

less than 1.5 seconds to process a 3D volume contain-

ing 160 × 148 × 208 voxels. The final average point-
to-mesh error (PTM) we obtained is 1.28 mm. Con-

sidering the resolution of the test dataset, we obtained

subvoxel tracking accuracy.

Section 2 illustrates the learning procedure. Section 3 de-

scribes the tracking algorithm. Section 4 provides the experi-

mental results and section 5 concludes the paper.

2. LEARNING

Because the motion of LV is close to periodic, motion priors

play a key role in improving the tracking accuracy. Multi-

ple motion modes are learned using manifold learning and

hierarchical K-means. Since the 3D ultrasound has rela-

tively low image quality, learning based 3D active shape

model (ASM) [5] is used to achieve the robust 3D boundary

tracking. Marginal space learning (MSL) [1] and probability

boosting tree (PBT) [6] are applied to train an ED detector to

automatically locate the pose of LV in the first frame. Two

boundary classifiers are also learned to segment the LV in

each frame based on MSL and PBT.

2.1. Learning the Motion Modes on The Manifold

Before motion manifold learning, the first step is the general-

ized procrustes analysis (GPA). All annotated 3D LV shapes
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Fig. 1. Manifold embedding of LV motions (a) The 11 LV motion sequences represented with different colors. (b) T clustering

results on the embedded low dimensional subspace. The star represents the end diastolic (ED) phase and square denotes the

end systolic (ES) phase.

in one training motion sequence are stacked together and tem-

porally resampled to form a motion vector with same dimen-

sionality. The 4D generalized procrustes analysis (GPA) is

used to align these motion vectors to remove the translation,

rotation and scaling. The shape difference and motion pat-

terns are still preserved. After the 4D GPA, these aligned mo-

tion vectors are decomposed into 3D shapes. All the follow-

ing learning operations are performed on these aligned 3D LV

shape vectors.

Given the fact that the actual number of constraints that

control the LV motion are less than its original dimensional-

ity, the aligned 3D LV shape vectors are expect to lie on a

low dimensional manifold, where geodesic distance has to be

used to measure the similarities. Given a set of 3D shape vec-

tors S = {s1, ..., si, ..., sn} where si ∈ Rd, there exists a

mapping T which can represent si in the low dimension as

si = T (vi) + ui i = 1, 2, ..., n (1)

where ui ∈ Rd is the sampling noise and and vi ∈ Rd
′

de-

notes the representation of the original i-th shape si in the

low-dimensional subspace with dimensionality d
′
.

Unsupervised manifold learning is capable of discovering

the nonlinear degrees of freedom that underlie the manifold.

We apply ISOMAP [7] to embed the nonlinear manifold into

a low dimensional subspace. We first determine the neighbors

of each vector si in the original space Rd and connect them to

form a weighted graph G. The weights are calculated based

on the Euclidean distance between each connected pairs of

vectors. We then calculate the shortest distance in the graph

G, dG(i, j), between pairs of vectors mi and mj . The fi-

nal step is to apply the standard multiple dimensional scaling

(MDS) to the matrix of graph distance M = {dG(i, j)}. In

this way, the ISOMAP applies a linear MDS on the local patch

but preserve the geometric distance globally.

Figure 1a shows the 11 LV motion sequences on the em-

bedded low dimensional subspace. It can be observed that

the motion of LV roughly form a circle through manifold

learning, which proves that the LV motion is pseudo-periodic.

Given all the motion cycles shown on the reduced subspace.

We applied a hierarchical K-means to learn the motion modes.

The clustering results of 11 motion sequences are shown in

Figure 1b. The two clustered motion modes (shown in the

black rectangle in Figure 1b) represent two complete differ-

ent motion trajectories which start from similar ED shapes.

Each motion mode is a weighted sum of all sequences that

are clustered into the same group. The weights are propor-

tional to their Euclidean distance to the cluster center on the

reduced subspace. Geodesic distance in the original mani-

fold is modeled by Euclidean distance on the embedded low

dimensional subspace.

2.2. Learning The Detector and Boundary Classifiers

Discriminative learning based approaches have proven to be

efficient and robust for 2D object detection. In these meth-

ods, the object is found by scanning the classifier over an ex-

haustive range of possible locations, orientations, and scales

in an image. However, it is challenging to extend them to

3D problems since the number of hypotheses increase expo-

nentially with respect to the dimensionality of the parame-

ter space. The idea for marginal space learning (MSL) [1]

is not to learn a classifier directly in the full similarity trans-

formation space, but incrementally learn classifiers on pro-

jected marginal spaces. As the dimensionality increases, the

valid (positive) space region becomes more restricted by pre-

vious marginal space classifiers. In our case, we split the es-

timation into three problems: position estimation, position-

orientation estimation, and full similarity transformation esti-

mation. MSL can reduce the number of testing hypotheses by

several orders of magnitude.

In order to achieve the boundary tracking, Active shape

models (ASM) [5] are used in our algorithm. The original

ASM does not work in our application due to the complex

background and weak edges. Learning based methods can ex-

ploit more image evidences to achieve robust boundary classi-

fication. We train an ED detector using MSL and two bound-

ary classifiers (one for LV motion close to the ED phase and
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Fig. 2. Two volume-time curves which demonstrate a whole

cardiac cycle. The 3D opflow represents the tracking result

using 3D optical flow. Tr. detect. represents the tracking

by detection and Tr. collab. denotes the results using our

algorithm based on collaborative trackers.

the other for the ES) based on probability boosting tree [6] .

The ED detector is used to locate the LV and the boundary

classifiers are used to segment the 3D LV boundary.

3. TRACKING

Given a testing LV motion sequence, the tracking is initialized

from an automatic detection and segmentation of LV in the

ED frame using the learned detector and boundary classifiers.

At time t, registration based reverse mapping and one-step

forward prediction is used to generate the motion prior for

t+1. Started from the motion prior, two collaborative trackers

are used to track the LV in each frame.

3.1. Tracking Initialization

Given the first frame in the LV motion, all positions, orien-

tations and scalings are scanned by trained detector and the

first 100 candidates are kept. The final similarity transforma-

tion is obtained by simply average the 100 candidates. After

the similarity transformation between the mean LV shape and

the testing object is found, we put the registered LV mean

shape as the initial position for the boundary classifiers. We

use marginal space learning (MSL) to detect LV in the first

frame. For more details about MSL, we refer readers to [1].

3.2. Registration Based Reverse Mapping and One-Step
Forward Prediction

Given the LV shape at time t, in order to obtain the motion

prior for t + 1, we need to map the current LV shape in the

real world coordinate system to the leaned multiple motion

modes. Thin plate spline (TPS) transformation [8] is applied

to perform this mapping. TPS is a nonrigid transformation

between two point sets. Affine transformation has proven to

be a special case of TPS. Given two 3D point sets, the TPS is

estimated by minimizing

Etps(T ) =
∑

i

‖wi − T (vi)‖2 + λf(T ). (2)

with wi denote the 3D boundary point on the learned motion

modes and vi denote those on the boundary of LV in the test-

ing motion.

Given the current LV boundary in a testing sequence, the

one-step forward prediction is calculated iteratively using the

J-th motion mode which minimize the previous t accumu-
lated TPS registration errors

J = arg min
j

t−1∑

i=0

Etps(xt, mj), j = 1, 2, ..., N (3)

where xt is the current LV boundary and mj represents

the corresponding 3D shape of the j-th motion mode. The

N is equal to the number of motion modes. Notice that there

exists motion mode change during the prediction, where it

starts from one motion mode but jumps to another. This cor-

responds to the LV motion which starts from a similar ED

shape with one learned motion mode, but has a motion tra-

jectory close to another. Using the accumulated TPS regis-

tration error based one-step forward prediction, the algorithm

provides accurate motion prior for boundary classifiers.

3.3. Collaborative Trackers

Given the shape prior learned using one-step forward predic-

tion, for each point and its ±12 mm range on the normal di-

rections, the learned boundary classifiers are used to move

each point to the optimal position where the estimated bound-

ary probability is maximized. The ED boundary classifier is

used when the frame index is close to ED and the ES bound-

ary classifier is used when it is close to ES.

In order to compensate the drawbacks of detection tracker

we mentioned in the introduction, the 3D template tracker is

also applied. Given xt = (x, y, z)T to be the pixel coordi-

nates of a boundary point, we can construct a template around

the neighborhood of xt, T (xt) (13×13×13 cube in our case).

Let G(xt, λ) denotes the allowed transformation of the tem-

plate T (xt), the goal is to search best transformation parame-

ters which minimize the error between T (xt) and G(xt, λ).

λ = arg min
λ

∑

xt∈T

[G(xt, λ) − T (xt)]
2
. (4)

Although the template matching algorithm is not robust

and only works under the assumption of small inter-frame

motions, it respects temporal consistence. In each frame we

update the template using the previous collaborative tracking

result, which fuse both the detection tracking and template

tracking. Because the global motion prior is enforced, this

updating scheme can help template tracker to recover from

the tracking failures.
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Fig. 3. A comparative tracking results of a testing LV motion

sequence with 12 frames. The first two columns are the track-

ing by detection, the 3rd and 4th columns are the 3D optical

flow and the last two columns are the results of our proposed

algorithm. The rows correspond to frame index 1, 6 and 8.

The data fusion of two tracking results is obtained by

defining prior distribution of detection tracker and template

tracker. The detection tracker is assigned more weights

around the ED and ES phases while the template tracker is

weighed more between the ED and ES phases based on the

knowledge of experts.

4. EXPERIMENTAL RESULTS

We collect 67 annotated 3D ultrasound LV motion sequences.

Each 4D (x, y, z + t) motion sequence contains 11-25 3D

frames. In total we have 1143 3D ultrasound volumetric data.

Our dataset is much larger than many reports listed in the lit-

erature, e.g. 29 cases with 482 3D frames in [3], 21 cases with

about 400 3D frames in [9] and 22 cases with 328 3D frames

in [10]. The imaging protocols are heterogeneous with differ-

ent capture ranges and resolutions. The dimensionality of 27

sequences is 160 × 144 × 208 and the other 40 sequences is

160 × 144 × 128. The x, y and z resolution ranges are [1.24
1.42], [1.34 1.42] and [0.85 0.90] mm. In our experiments, we

randomly select 36 sequences for training and the rest is used

for testing.

The accuracy is measured by the point-to-mesh (PTM)

error, eptm. All 3D points on each frame of the testing

sequence are projected onto the corresponding annotated

boundary. The projection distance is recorded as eptm. For

a perfect tracking, the eptm should be equal to zero for each

3D frame. The final mean eptm we obtained is 1.28 ± 1.11
mm with 80% of the errors below 1.47 mm. Considering

the range of resolution in the testset, we actually obtained

subvoxel tracking accuracy.

The volume-time curve of LV is an important diagnosis

term to evaluate the health condition of the heart. In Figure 2

we show two volume-time curves of the ground-truth annota-

tions, the tracking results using our algorithm and two com-

parative tracking methods. It is obvious that our algorithm

provides the most accurate volume-time functions.

In Figure 3, tracking by detection produces leakage er-

rors in the mitral valve region (white rectangles in columns

1 and 2). The 3D optical flow algorithm fail to produce

enough shrinkage in the apex of the heart (white rectangles in

columns 3 and 4). Using our proposed algorithm (columns 5

and 6), none of the errors are observed.

One of the major concern of 3D tracking is speed. Our

currently C++ implementation requires less than 1.5 seconds

per frame, which contains 160 × 148 × 208 = 4, 925, 440
voxels.

5. CONCLUSIONS

In this paper, we present a robust, fast and accurate LV track-

ing algorithm for LV in the 3D echocardiography. Instead of

building specific models of the heart, all the major steps in our

algorithm are based on learning. Our proposed algorithm is

therefore general enough to be extended to other 3D medical

tracking problems.
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